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The contribution of the Blume-Orbach mechanism to the second-order spin-lattice coefficients
for Gd** in cubic sites of CaF, has been calculated with a point-charge approach for the orbit-
lattice interaction. Our results, G{’=-0,006 cm™! and G’ =~0.07cm™!, agree in sign with
the experlmental values of G§¥ =~ 0, 22 em-! and’ G2'=-0.11cm"!,  Differences in magnitude
of G< ) can be understood in view of the opposite contribution of the fourth- and sixth-order
terms of the orbit-lattice Hamiltonian. We conclude that the Blume-Orbach mechanism pre-
dicts values for the spin-lattice coefficients G2’ and G§Z’ of Gd* in CaF, in reasonable agree-
ment with the experimental data, and that the cubic crystamne field must be considered in any

calculation of the spin-lattice parameters.

I INTRODUCTION

The crystalline electric fields acting on paramag-
netic ions introduced as impurities in a diamag-
netic lattice modify the free-ion states producing
splittings and shifts of its energy levels. Their ef-
fects on the ground state are observed by electron-
paramagnetic -resonance experiments (EPR) where
the data are described in terms of the spin-Ham-
iltonian formalism.

When the crystal is deformed, e.g., by an ex-
ternal applied stress, an additional component of
the electric field appears and originates the so-
called orbit-lattice coupling.® From a phenomeno-
logical point of view, an effective spin formalism,
similar to the spin Hamiltonian, is used to fit the
experimental data. This spin-lattice Hamiltonian®
H,, couples a paramagnetic ion in a crystal with
the deformations of the lattice. It reflects the local
symmetry of the ion and operates on its effective
spin and these deformations.

The strength of the spin-lattice interaction is
given by the spin-lattice coefficients, ‘and can be
evaluated for the ground state of a paramaghetic ion
through EPR experiments, where the shifts of the
positions of the lines are measured as a function of
an externally applied uniaxial stress. 3

By this method several measurements of the
spin-lattice coefficients for S-state ions in a cubic
environment have been reported for the iron
group™* (3d° ©S;/,, Mn®*, and Fe®) and the rare-
earth group®=® (417, S,,;, Eu®, and Gd*). The
interest to study these half-filled shell ions comes
from the fact that only the combined effect of the
orbit-lattice interaction with the spin-orbit, spin-
spin interactions, etc., can produce splittings or
shifts of the ground state, and considerable efforts
have been made to find which mechanisms can ex-
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plain the experimental data.

A detailed account of the calculations for the
iron-group ions is given by Sharma et al.® They
consider the various mechanisms proposed by
other authors, 1*™*? including covalency and overlap
corrections; and conclude that from Mn®' the pre-
dominarit mechanism is that originally proposed by
Blume and Orbach (BO), !2 where the ground state
%S of Mn®" is admixed by the spin-orbit interaction
with excited states which are strongly mixed by the
cubic field, providing a large contribution to the
spin-lattice coefficients.

Wybourne! reported a detailed calculation of
several mechanisms contributing to the axial field
splitting of GAd®* in the Dy, symmetry of the gadolyn-
ium-ethyl-sulphate crystal. His results are in
agreement in magnitude with, but of opposite sign
from, the experimental values and he suggests that
no purely iohic model can account for the observed
splitting. Recently Detrio!® calculated the spin-
lattice coefficients for Gd* in CaF, using a point-
charge model for the crystalline electric field and
free-ion state vectors obtained by including elec-
trostatic, spin-orbit, spin-spin, spin-other-orbit,
and configuration interactions. He again obtained
agreement in magnitude but opposite signs from the
experimental values. 5 Detrio suggests that the er-
ror lies in the point-charge model used in the cal-
culation rather than in the wave functions.

In this paper we report a calculation of the spin-
lattice coefficients of Gd* in cubic positions of
CaF,;. Owing to the reasonable agreement obtained
by Sharma et al. ® for Mn**, we consider the con-
tribution coming from the BO mechanism. We ob-
tained the values of the two second-order spin-lat-
tice coefficients® G& and G which correspond to
Gy and Gy, respectively, as defined for the iron-
group ions where only second-order coefficients
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4 CALCULATION OF THE SPIN-LATTICE..

contribute.® Our estimation, performed with an

effective point-charge approach for the electric
field induced by the strain, gives results with the
correct signs and in reasonable agreement in mag-
nitude for the trigonal coefficients G¢2; the value
for G, however, is 36 times smaller than the
experimental value.® As will be discussed in Sec.
IV, our results indicate that the mechanism of BO
gives a large contribution to the spin-lattice inter-
action, and that the effect of the icubic field is very
important and should be considered in any future
calculation.

II. BLUME-ORBACH MECHANISM

The ground state of the Gd* free-ion (41" con-
figuration) is an orbital singlet ®S and the nearest
excited states are ®P, D, ®F, G, ®H, and ®I. The
orbital degeneracy of the excited states is removed
by the cubic crystalline field of the CaF, lattice,
and they split according to the irreducible represen-
tations of the cubic group O,.

O’Hare and Donlan'® have evaluated the cubic
crystalline field parameters by fitting the Ham-
iltonian

Heop= By [C+ (V ) (C{ 4 C¥)]

+ B6 [C 6) _ (\/' ) (C(G) (6))] (1)

with optical data. In Eq. (1) the z axis is the [001]
crystal direction, a convention which will be fol-
lowed in this work. ‘They found B,= - 2160.0 cm™
‘and Bg='792. 85 cm™, Because the spatial part of
the spin-orbit interaction transforms like I'y in O,
only the I'j components of the excited sextuplets
could be admixed to the ground state in a first-
order theory. *?

The energy matrix for the T’y components of the
above-mentioned excited terms was then calculated
using the free-ion term energies, "'the Hamiltonian
of Eq. (1), and the cubic T', wave functions given by
Griffith.'® The reduced matrix elements inside the
77 configuration and the values for the 3-j and 6-j
are from the tables of Nielson and Koster® and
Rotenberg et al., 2° respectively. This matrix was
diagonalized, as in the calculation by BO, !2 be-
cause the size of the cubic field is not much small-
er than the relative splitting of the terms.  The
eigenvectors are defined as

I?r't,a’ Ms>=Z‘ILA’i.L|Br4.a(L)’ Ms) ’ (2)

where a=1, 0, =1; 1T, 4(L), M) is the T'y,, com-
ponent corresponding to the °L term (L=P, F,G,H,,
H,, and I, where a and b indicate the two states
belonging to the ®H term which transform like T',),
and M, is the z-axis projection of the total-spin
quantum number. The resulting eigenvalues and
eigenvectors are given in Table I.

The 13T,,4 M) states are then admixed to the
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185, M) ground level by the spin-orbit interaction.
To first order the admixed wave functions will be!?

|Bs, Ms>l= |88, M3> "Zi AtP ¢ a(M,)]“R, .4

s"1>

+b(Ms)tgr4.-l’ Ms+1>+c(Ms)|?r4.o’ Ms>] ’
(3)

where the value of the spin-orbit constant ¢ of Gd**
is given in Ref, 17, The a(My), b(M,), and c(M,)
appearing in Eq. (3) are those defined by:BO, and
their values for this case were-calculated using the
spin-orbit reduced matrix elements given by Niel-
son and Koster.!® We obtain

a1y = =[4 (F + M) (3+ M2,

(4a)
b(M3)=—[%(Z‘ _Ms)(%_Ms)]l/ay (4b)
C(Ms)= -[% (Z‘ _Ms) (g—"'Ms)]l/z . (40)

Some comments to justify Eq. (3) are important at
this point. For rare-earth 1ons the spin-orbit in-
teraction is stronger than the cubic crystalline
field. However, in the case of an S-state ground
level departures from L-S coupling are absent,
and, even if they are important for the excited
terms, our perturbation calculation for the ground
level eigenfunctions remains valid.

A. Tetragonal Distortion

When a force is applied along the [001] direction
of the crystal, a tetragonal deformation €;,
=(2¢,, —€,, — €,,), where the €, are the compo-
nents of the strain tensor, is introduced.. If the
orbit-lattice Hamiltonian is expanded in terms of
the deformation, the linear part introduced by this
distortion is

(3¢,6) _ @) ~(2)
5(:01 ‘{BSK CO

(4)[ (‘/-TZ)C(4)+(‘/-ZT) (C(4) fz))]

(8)[(‘[7) C(6)+ 1 (C4(6) (6)) }631,6 , (5)
where the B('" are numerical coefficients which
will be evaluated from an electrostatic model, ‘and
the linear combinations of the single-electron op-
erators cim transforming like I'y, s are those given
by Griffith, 18

The matrix elements of the Hamiltonian of Eq.
(5) within the states defined in Eq. (3) were calcu-
lated using, the values glven in Table I, the tables
of N1elspn_ and Koster!® for the reduced matrix ele-
ments and symmetry arguments. We find

"(8S, M,|3¢36:° |85, M, )" = (0. 084B4% + 0. 060B.))

x{-3PM)+ PM )]+ P(M )} €50 (6)
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TABLE I. Eigenvectors and eigenvalues of the cubic field of the components of the spin sextuplets of Gd* in CaF,,
transforming like T'y in O,. The energies are referred to the ground state %S,

Eigenvectors A;

i 6p o 5 g, VA Vs 4 (em™)
1 0. 9660 —0.0082 0.0254 —0.0069 0.0 ~0.2571 33413
2 ~0.0106 0.9138 0.4023 ~0.0474 —0.0001 —0.0279 54660
3 —0.0237 —0.4047 0.9108 ~0.0766 ~0.0001 0.0161 53168
4 -0.0023 0.0115 0.0892 0.9956 0.0010 ~0.0269 60146
5 -0.0 0.0 0.0001 ~0.0010 1. 0000 0.0001 60073
6 0.2573 0.0313 0.0057 0.0258 -0.0 0.9655 35673

in units of cm™,

The experimental data can be fitted with a spin-
lattice Hamiltonian which contains second- and
fourth-order operators in the effective spin.® For

a tetragonal deformation it can be written as
H3" =[G 08+ 657 (03-10] €34,6,

Q)

where the O™ are the Stevens operators and G2
J

and Gi% are the second- and fourth-order spin-
lattice coefficients, respectively. When Eqgs. (6)
and (7) are compared using the values given in Egs.
(4a)—-(4c), it is seen that the BO mechanism pre-
dicts the same tensorial dependence in M, as that
of the second-order terms in H,,. We find

B. Trigonal Distortion

A trigonal distortion appears when a stress is applied along the [111] crystal direction. In this

case ¥, is

s ® = (L/VD{BS (5 - C8) + B + By (G - C8)+ B (CF - CQ} &5 e

case 1€
where €;5,:=€,. The corresponding Hy is®

HEOD ={G2) (1/2i) (S - %)+ G&) (1/44) [(75% - S(S+1)-5) (S - 52) + (52 - S2) (752 - S(S+1)=5)]} €54,¢ -

Along the same lines as for the tetragonal distortion, we find, comparing Egs. (9) and (10),

G2 =i[0. 000258 - 0. 0242B{% + 0. 09668’ ~ 0. 0200B:%]x10™ cm™ .

5¢

III. EVALUATION OF ORBIT-LATTICE INTERACTION
IN POINT-CHARGE APPROACH

The values given in Eqgs. (8) and (11) for G and
Gs“"‘,’ were calculated using only the energies of the
free-ion terms, the spin-orbit interaction constant,
and the cubic field parameters of the Gd*" ion in the
CaF, lattice, which are known from optical data!®'’
It remains now to estimate values for the orbit-
lattice Hamiltonian parameters B, To do that,
we have used a point-charge model, in a first-
nearest-neighbors approach, valid for the n=4 and
n=6 terms of ¥,;, which gives the main contribu-
tion to Eqgs. (8) and (11). For a cubic coordination
of F~ ions around the impurity we find

32 ey (r?)

)
Bse=-3 TR

G& =(-0.028B4% - 0.020B8)x10™ cm™ .  (8)
(9)
(10)
(11)
-
32 ey (7t
B?,’:——g—(\/-:i)l —3———°;;< >,
64 €2 e (7*)
By = -5 (V15) —fs—*,
2 4
B =80 (v5)s Sea{r)
2 6
=32 (y19) “oeul”)
16 e e 78)
B =-57 (V210)i —=p—~,
’ 2 6
BEY= - 22 (V462)i e—-——.r——e"g( 2, (12)
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where the F~ ions are supposed to be a point charge
eeqy at a distance R from the Gd** ion.

The quantities appearing in Eq. (12) were evalu-
ated, as in BO, from the experimental values of the
cubic field parameters. In the point-charge ap-
proach B“ and B®’ defined in Eq. (1) are

B“’:Z—B e eos (1) B(e)=__1_6 & eers(7°)
9 R’ ’ 9 R ’

Then

efeur(rt) . 1

R =-694 cm

and

2 6

Ceut(V)_ _ 446 om*

With those values and using Egs. (12), we find

B&=6370 cm™ B&)= - 13790i cm™

B® = _-5930 cm™

B&*=3830i cm™, B&®=1890i cm™

B‘z’ and B ca.nnot be evaluated by this approach,
but B3 ) does not contr1bute to Eq. (8), and a direct
estxmatmn of B5 ¢ shows that its contribution to
G& in Eq. (11) can be neglected.

Th1s semiempirical evaluation of the orbit-lat-
tice Hamiltonian parameters avoids making as-
sumptions about the real values of R, which can
be altered by the local distortions of the lattice,
of (7*) and (7®), which are known only for the free
ion, and of e.¢;, which depends on the polarization
and spatial charge distribution of the ligands ions.
Covalent and other effects could yield different con-
tributions for the cubic field than for the orbit-lat-
tice parameters, and then our values for the B‘("’
should be taken as a very rough estimation of the
orbit-lattice coupling.

IV. RESULTS AND DISCUSSION

Using the orbit-lattice parameters calculated in
Sec. III and Egs. (8) and (11), we find

G (theor)= - 0. 006 cm™

G2 (theor)= - 0. 07 cm™

The experimental values of these spin-lattice strain
coefficients are obtained from the values of the
stress coefficients measured by Calvo et al., ° using
the elastic constants of the CaF, crystal®':

G&) (expt)=-0.22 cm™, G& (expt)=-0.11 cm™

It is seen that the signs of both coefficients pre-
dicted by our calculatlon are correct, but the mag-
nitude obtained for G 1s about 36 times smaller
than the experimental value, and that obtained for

“proposed by BO' for Mn®'.
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G& is shghtly smaller than the experimental value

In our calculation, the main contributions to G
and G(z’ come from the mixture of the ®P states
with the 8G and ®I terms (see Table I) induced by
the fourth- and sixth-order cubic crystal fields,
respectively. The resulting 8P states are admixed
to the %S ground state by the spin-orbit interaction;
when an axial field is induced by the strain, fourth-
and sixth-order terms of the orbit-lattice interac-
tion will give contributions to the spin-lattice co-
efficients, which are mainly proportional to the ad-
mixtures of the 8P with the 8G and °I terms due to
the cubic field. For G ) the fourth- and sixth-or-
der terms of Eq. (9) contrlbute in the same direc-
tion, as is seen in Eq. (11) using Eq. (12). This
is not the case for GiZ), where the fourth- and
sixth-order contributions have opposite signs and
are comparable in magnitude as indicated by Eqgs.
(8) and (12). Then, within our rough estimation
of the orbit-lattice parameters, we can expect
agreement with the experimental data only for G,
as is the case in our calculation. '

We have only considered the contribution to the
spin-lattice interaction coming from the mechanism
However, as pointed
out in Sec. I, Wybourne has proposed several other
mechanisms** which should be considered in an
evaluation of the spin-lattice interaction. Detrio, !°
in his calculation of the spin-lattice coefficients
for Gd* in CaF,, uses free-ion state vectors ob-
tained by diagonalizing simultaneously the spin-
orbit, spin-spin, spin-other-orbit, and configura-
tion interactions, and he found that the main con-
tribution to the spin-lattice interaction comes from
second-order terms in 3C;;. The disagreement in
sign obtained by both authors is attributed to the
inadequacy of the ionic model. Probably further
improvement in the calculation of the spin-lattice
coefficients of an S-state ion could be obtained by
considering the effect of the covalent mixing of the
4f and, more important, the 5p shells, as was done
by Watson and Freeman®® in the calculation of the
crystal field splittings of Tm?*.

Newman?® has advanced the hypothesis that the
dominant contribution to the zero-field-splitting
parameter of Gd* in axial symmetry comes from
charge-conjugation-invariant components of the
crystal field. At present no numerical evaluation
of this mechanism exists.

Our calculation shows that, even within the weak-

‘ness of the point-charge approach, the cubic crys-

talline field acting on the Gd* ion is very important
and should be considered in obtaining the ground-
state wave functions.

We thmk that it would be very interesting to mea-
sure the B parameters of 3C,, by uniaxial-stress
optical experiments; these values could provide a
direct check of the model.
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Additional information about the effectiveness of
the BO mechanism to the spin-lattice interaction
for the f* conflguratmn could be obtained from cal-
culations of G&’ and G& for Eu® in CaF,, and Gd*
in CaO. Thes‘e coefficients have been measured,*'®
and the values for Gd* in the octahedral coordina-
tion of the CaO have opposite signs from those
found for Gd* in a cubic environment; this change
could be related with the different signs of the
fourth-order cubic field parameters for those co-
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ordinations. - Unfortunately no optical data exist
for those systems.

Oseroff and co-workers®?* have observed a
variation with temperature of the spin-lattice co-
efficients of Gd* in ThO, and CeO, which cannot be
explained with the change of the elastic constants.
This variation should indicate that dynamic effects
due to the orbit-lattice coupling contribute to the
spin-lattice interaction. This effect will be dis-
cussed in a forthcoming paper.

*Member of the Carrera del Investlgador Cientifico,
Consejo Nacional de Inveshgaclones Cientificas y Técnicas,
Argentina.
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